THE JOURNAL OF ANTIBIOTICS

STROBILURINS F, G AND H, THREE NEW ANTIFUNGAL METABOLITES FROM *BOLINEA LUTEA*

II. STRUCTURE DETERMINATION

ANDREAS FREDENHAGEN, PAUL HUG[†] and HEINRICH H. PETER*

Pharmaceutical Research Department, Biotechnology Subdivision, [†]Central Function Research, Ciba-Geigy Ltd., 4002 Basel, Switzerland

(Received for publication January 8, 1990)

The structures of the new antibiotics strobilurins F, G and H and of compound 8 were determined by spectroscopic methods, mainly 1 H and 13 C NMR and confirmed by degradation reactions.

To date six antifungal antibiotics of the strobilurin-type are known (Scheme 1): Strobilurin A $(1)^{1,2}$) which is identical with mucidin³⁾, strobilurin B $(2)^{1,2}$, strobilurin C $(3)^{4}$, methoxymucidin $(4)^{5}$, hydroxystrobilurin D⁶⁾ and strobilurin E⁷⁾. They contain an unsaturated side chain with a terminal (E)- β -methoxyacrylate moiety and differ usually in their aromatic substitution. In the preceding paper⁸⁾ we described the fermentation, isolation and biological properties of three new strobilurins F, G and H

Scheme 1. Chemical structure of some strobilurins and compound 8.

$$R_{1} \xrightarrow{7}_{P_{2}} \xrightarrow{9}_{H_{3}} \xrightarrow{10}_{L_{4}} \xrightarrow{14}_{H_{3}} \xrightarrow{16}_{H_{3}} \xrightarrow{11}_{L_{2}} \xrightarrow{15}_{H_{3}} \xrightarrow{16}_{H_{3}} \xrightarrow{11}_{L_{2}} \xrightarrow{10}_{CH_{3}} \xrightarrow{15}_{H_{3}} \xrightarrow{11}_{R_{2}} \xrightarrow{11}_{R_$$

8

661

 $(5 \sim 7)$ as well as the related compound 8. The latter substance is produced in the early stage of the fermentation and might be formed as a side-product during the biosynthesis of strobilurin A or as a precursor for the latter. In this paper we will present the structure elucidation and physico-chemical properties of these compounds.

All ¹³C NMR signals were assigned by a ¹H-¹³C COSY and a fully coupled ¹³C NMR spectrum

Proton	2		5		6		7		8				11	
		1	(00			1	6.07	1 4	7.20	1 1	7.64			
1	6.84	d	6.99	br s	6.94	br s	6.87	br t	7.39	br d	7.54	m	7.71	d
2							675	444	7.50	Dri bri				
3	7 25	d	6 78	m	6 85*	dd	7 20	4000 t	7.19	brt	6.00	d	7.08	đ
4	6.90	d d	6.78	m	6.03*	dd	6.95	br h	7 30	br d	7.51	u m	7.08	m
7	6.43	đ	6.40	d	6.37	d	6.46	d	6.48	d	7.51	m	1.15	111
8	6.56	dd	6 48	dd	6.48	dd	6.61	dd	7.02	dd				
9	6.25	ad	6.23	ad	6.22	ad	6.26	ad	6.18	br d				
11	0.25	qu	0.20	qu	0.22	qu	0.20	qu	2.57	t t				
12	7.44	s	7.42	s	7.43	s	7.42	S	3.76	t				
14	1.98	br s	1.96	br s	1.96	br s	1.97	br s	1.88	br s				
15	3.85	s	3.84	s	3.84	s	3.84	s						
16	3.74	s	3.73	s	3.73	s	3.73	s						
17(a)	3.90	s	4.55	s	4.23	dd	3.80	\$			4.54	dd	4.18	dd
17b					3.95	dd					4.02	dd	4.27	dd
18			5.47	m	3.50	dd					3.88	dd	3.67	dd
20			1.79	br s	1.21	s					1.31	S	1.25	s
21			1.73	br s	1.47	s					1.32	s	1.53	s
22a					4.15	br dd								
22b					4.06	br dd								
23					5.34	t, m								
25					1.76	br s								
26					1.69	br s								· •.
	Coupling constants (Hz)													
	2		5		6		7		8		10 ^a		11	
1,5	2		1				2							
1,3							2							
3,4							8		7.5					
3,5							1							
4,5	8				8.5		8		7.5		8		8	
7,8	15.5		15.5		15.5		15.5		15.5					
8,9	10.5		10		10.5		10.5		11					
11,12									6.5					
17a,17b			_		12.5						11.5		12.5	
17a,18			7		3						2		1.2	
176,18					8						9		4	
18,20			1.5											
18,21			1.5											

Table 1. ¹H NMR chemical shifts of 2, 5, 6, 7, 8, 10 and 11.

Chemical shifts given in ppm. Solvent: $CDCl_3$ except for 10. Assignments with asteriks may be interchanged. ^a Solvent: CD_3OD .

11.5

6.5

1.5

1.5

7

22a,22b

22a,23

22b,23

23,25

23,26

Carbon	2	5	6	7	8	10 ^a	11 ^a
1	110.1	111.4	121.6	111.9	126.2	124.5	127.0
2	155.0	145.9*	146.8	159.7	128.6	144.9	147.4
3	121.1	145.4*	150.8	112.5	127.2	149.1	156.8
4	130.1	111.9	120.6	129.4	128.6	117.7	121.6
5	119.1	119.1	122.4	119.0	126.2	119.9	126.4
6	137.9	130.4	133.7	139.3	137.7*	124.9	125.5
7	130.3	130.8	130.4	131.1	131.1	169.5	171.0
8	127.3	125.1	125.7	126.9	124.9		
9	129.5	129.8	129.8	129.7	128.7		
10	132.2	131.6	130.8	131.6	135.9*		
11	110.7	110.8	110.8	110.7	35.8		
12	158.9	158.8	158.9	158.9	60.9		
13	167.7	167.8	167.9	167.7	24.1		
14	23.7	23.6	23.7	23.7			
15	61.9	61.9	61.9	61.9			
16	51.6	51.6	51.6	51.6			
17	56.1	65.8	68.7	55.2		66.5	71.1
18		119.2	81.9			80.4	75.3
19		138.9	80.6			71.2	80.8
20		25.8	27.7			25.1*	24.2*
21		18.2	20.8			26.5*	25.2*
22			67.3				
23			120.9				
24			137.5				
25			25.8				
26			16.1				

Table 2. ¹³C NMR chemical shifts of 2, 5, 6, 7, 8, 10 and 11.

Chemical shifts given in ppm. Solvent for 2, $5 \sim 8$: CDCl₃. Assignments with asterisks may be interchanged. ^a Solvent: CD₃OD.

where appropriate. The ¹H NOE experiments were recorded as difference spectra.

Fermentation of *Bolinea lutea* Sacc. gave strobilurin B (2) as the main product. For reference purposes the ¹H and ¹³C NMR data of 2 were examined (Tables 1 and 2). Good correlation was found with the published data by SCHRAMM *et al.*¹⁾ except that the signals for C-6 and C-10 as well as the ¹H NMR assignments for the methyl groups 15 and 16 should be interchanged. The same correction had to be made for the spectrum of strobilurin A, as shown by NEHRUD *et al.*⁹.

Structure of Strobilurin F (5)

The IR spectrum of 5 shows in addition to signals typical for strobilurins a sharp band at 3530 cm^{-1} indicative of a hydroxy group. The HR-MS gives the elementary composition $C_{21}H_{26}O_5$ which is one oxygen atom more than strobilurin C (3). The ¹H NMR spectrum of 5 is very similar to 3 in that it displays all signals of the strobilurin side-chain and the coupling pattern of a 3,3-dimethylallyloxy residue. However an additional phenolic hydrogen signal at 5.7 ppm and the absence of one aromatic proton signal can be observed. The following NOE's were observed in a CDCl₃-C₆H₆ mixture in which all proton signals are well separated.

It revealed the protons in 1, 4 and 5 position. The ether linkage must be next to 4-H at C-3 leaving only C-2 for the hydroxy group. The 13 C NMR data corroborate the above findings. Epoxidation and cyclization of **5** under basic conditions leads to the

aldehyde 9^{10} which was oxidized with Jones reagent to the acid 10.

The MS spectrum of 10 shows a large signal at m/z 180, corresponding to a loss of 58 (C₃H₆O) and supporting a dimethylcarbinol side chain and therefore a six membered ring. Analysis of the fully coupled ¹³C NMR supports the position of the ether linkage as derived from structure 5: Whereas the signal of the oxygenated C-2 (144.9 ppm) shows only couplings within the aromatic ring, C-3 (149.1 ppm) is characterized by two 2 *meta*-couplings shown by selective decoupling of 1-H and 5-H. Additionally it has a coupling of J=6 Hz to 17-Hb leading to an ether between those carbons and to structure 10. The aldehyde 9 synthesized by BACKENS¹⁰, exhibits the same coupling pattern. The rest of the ¹³C NMR spectrum is consistent with the proposed structure.

Structure of Strobilurin G (6)

The molecular formula of compound 6 was determined to be $C_{26}H_{34}O_6$ from the HR-MS or one isoprene unit more than 5. Though there are three more oxygens present than in simple strobilurins, there are no hydroxy- or additional carbonyl-functions present (IR and ¹³C NMR) which suggests ether linkages. The mass spectrum (see Experimental section) further contained characteristic signals of the strobilurin side chain¹: m/z 305 (M-137) and m/z 75 as well as m/z 69 of a dimethylallyloxy moiety⁴).

The ¹H NMR data document the following structural fragments: The strobilurin side chain, a 1,4,5-trisubstituted benzene ring (according to the splitting), a 3,3-dimethyl-allyloxy residue, two singlet methyl groups (1.2 and 1.5 ppm) and a methylene group with two geminal protons at 3.9 and 4.3 ppm further coupling to a methine resonance at 3.5 ppm. The latter spin-system has to be oxygenated at both carbons according to the observed chemical shifts.

Irradiation (in $\text{CDCl}_3 - \text{C}_6\text{H}_6$) on the singlet methyl group at 1.5 ppm gives rise to a strong NOE on 18-H and irradiation on the 1.2 ppm methyl group to a 5% NOE at 17-Ha. The two methyl groups must share a quarternary carbon and are part of a triple oxygenated isoprene unit. Furthermore both methyl groups show a NOE on 1-H (3%) of the aromatic ring system upon irradiation, proving their spatial closeness.

The ¹³C NMR data support an ether linkage at C-19, the only signal of a quarternary carbon atom in that part of the spectrum. In the fully coupled spectrum and long range selective decoupling experiments C-22 discloses a long-range coupling of J=2.5 Hz to 23-H and one of J=6 Hz to 18-H across the ether linkage. These NMR experiments clearly revealed the location of one of the three ether groups in this molecule. The two other must be part of a seven-membered dioxygenated ring fused to the aromatic ring system. As shown above the methyl groups 20 and 21 are close to hydrogen 1, which leads to structure **6**.

In order to confirm this structure, acid 11 was prepared by oxidation of 6 with KMnO₄ at 60° C.

The ether at C-18 was cleaved as revealed by HR-MS. Upon irradiations on the singlet methyl groups the same NOE effects were observed like with the mother compound, though stronger $(3 \sim 7\%)$ on 1-H. Analysis of the ¹H coupled ¹³C NMR spectrum was much easier than of the mother compound **6**, as there were no long range couplings from the unsaturated side-chain. Spectrum and decoupling experiments were fully consistent with the proposed structure **11**.

While compounds 6 and 11 are optically active, the stereochemistry at C-18 was not determined.

Structure of Strobilurin H (7)

Mass spectroscopy of 7 gave the same elementary composition (HR-MS) and fragmentation pattern as methoxymucidin $(4)^{5}$. A spectral comparison of the ¹H NMR clearly showed the two compounds to be different in their aromatic substitution. Whereas 4 showed the AA',BB' spin-system at 6.8 and 7.3 ppm characteristic for a *para* substitution, compound 7 has four clearly separated resonances and has to be *meta* substituted according to the coupling constants. Analysis of the ¹³C NMR lines proves formula 7 to be correct.

Structure of 8

The UV spectrum below 250 nm (see Experimental section) and the IR absorption bands indicate that **8** is not closely related to the strobilurins. An IR band at 3600 cm^{-1} reveals the presence of an alcohol function. The molecular formula was determined to be $C_{13}H_{16}O$ by HREI-MS. The ¹H NMR spectrum displays the following structural fragments: A monosubstituted phenyl ring, an A_2 - B_2 system (2.6, 3.8 ppm) a methyl singlet at 1.9 ppm and a olefinic CH-CH-CH fragment. Irradiation at 2.6 ppm leads to a 16% NOE at the middle olefinic proton (8-H) suggesting a Z double bond with a quarternary carbon between them. Linked to this carbon is the methyl group which upon irradiation gives rise to a NOE ($\approx 20\%$) on 9-H. These findings define the middle part C-7 to C-12 of the molecule with hydroxy- and phenyl-groups at the end. The J=15.5 Hz coupling among 8-H and 9-H indicates an E configuration. The ¹³C NMR lines were consistent with these findings.

Experimental

The following instruments were used in this study: Mass spectrometer CEC-121 B, VG 70-4SE (for HREI-MS): NMR spectrometer Bruker AM 360 and Varian VXR-400 S, UV/VIS spectrophotometer Perkin-Elmer Lamda 5, polarimeter Perkin-Elmer 241, IR spectrophotometer Perkin-Elmer 983G.

Preparation of 9

To a solution of strobilurin F (5, 500 mg, 1.4 mmol) in CH_2Cl_2 (3 ml) *m*-chloroperbenzoic acid (1.4 g, 85%, 7 mmol) in 10 ml of CH_2Cl_2 was added. An exothermic reaction was observed and soon colorless crystals of *m*-chlorobenzoic acid started to precipitate. After cooling, the precipitate was filtered off and the filtrate was diluted with 50 ml of CH_2Cl_2 and washed three times with 5% NaHCO₃. The organic solvent was removed and the oily residue dissolved in 50 ml each of dioxane and of water. Cyclization was achieved by adding 5 ml of saturated Na₂CO₃ and stirring for 2 days. Removal of dioxane *in vacuo*, acidification with conc HCl and extraction with CH_2Cl_2 gave the crude product as a brown oil after evaporation of the solvent (500 mg). That crude material was used directly for the next step. A small sample (10 mg) was purified with HPLC on silica gel (Lichrosorb Si60, 5 μ m; 4.6 × 250 mm; CH₂Cl₂ - ethyl acetate, 90:10; 2 ml/minute; 254 nm; 2 runs; Rt 6.6 minutes) to give 1.3 mg of **9** as a yellowish oil.

Preparation of 10 A stirred solution of crude 9 (500 mg) in acetone (5 ml) was treated dropwise with Jones reagent (4 ml; 666

26.7 g CrO₃ in 23 ml of conc sulfuric acid diluted with water to a volume of 100 ml). The mixture was stirred for 2 hours and distributed between CH₂Cl₂ (100 ml) and saturated Na₂CO₃ (100 ml). The aqueous phase was acidified (conc HCl) and extracted twice with CH₂Cl₂ (100 ml), which was washed with water. Evaporation of the solvent gave yellowish crystals consisting of 50% product **10** and *m*-chlorobenzoic acid. The pure material was obtained by chromatography on a preparative reversed-phase column (Nucleosil 7-C18, 7 μ m; 16 × 300 mm; gradient from acetonitrile - water - TFA, 84 : 16 : 0.1 to 68 : 32 : 0.09 in 30 minutes; 10 ml/minute; Rt 16 minutes; 220 nm; 2 runs) to give **10** as colorless crystals (51 mg, 14% overall yield).

Prepatation of 11

A solution of $KMnO_4$ (2.57 g, 16 mmol) in water (40 ml), KOH (4% solution, 1.6 ml) and strobilurin G (6: 400 mg, 0.9 mmol) was stirred at 60°C until the pink color had disappeared (2 hours). The brown precipitate was filtered off and extracted with water (60 ml) at 70°C for 15 minutes and removed by filtration. The combined aqueous filtrates were extracted once with CH₂Cl₂ (120 ml), acidified with HCl (4N; 20 ml, pH 1) and extracted twice with CH₂Cl₂ (100 ml). The organic phase was filtered to remove water, and the solvent evaporated *in vacuo* to give 48 mg of colorless crystals (22% yield).

Data of 5

Colorless crystals from hexane-ether, mp $77.5 \sim 78^{\circ}$ C.

Anal Calcd for C₂₁H₂₆O₅: C 70.37, H 7.31, O 22.32.

Found: C 70.10, H 7.24, O 22.30.

HREI-MS: m/z 358.1768 (C₂₁H₂₆O₅, δ_m 1.2 mmu); EI-MS: m/z 358 (92, M⁺), 291 (29), 290 (100), 289 (38), 258 (30), 257 (45), 243 (22), 229 (49), 199 (30), 153 (82), 134 (29), 75 (41), 69 (55); UV λ_{max}^{EIOH} nm (ϵ) 230 (26,100), 299 (24,700), 322 (25,200); IR (CH₂Cl₂) cm⁻¹ 3530, 3030, 2940, 2860, 1705, 1630, 1580, 1510, 1460, 1440, 1390, 1320, 1240, 1200, 1140, 1120, 1080, 990, 970; ¹H NMR (360 MHz, CDCl₃): See Table 1; ¹³C NMR (90 MHz, CDCl₃): See Table 2.

Data of 6

Yellowish oil. HREI-MS: m/z 442.2373 (C₂₆H₃₄O₆, δ_m 1.8 mmu); EI-MS: m/z 442 (66, M⁺), 305 (33), 153 (27), 95 (20), 83 (22), 81 (28), 75 (36), 69 (100), 55 (32); UV λ_{max}^{EtOH} nm (ε) 229 (19,800), 301, (21,700); IR (CH₂Cl₂) cm⁻¹ 2970, 2940, 2880, 2850, 1705, 1630, 1570, 1500, 1450, 1440, 1240, 1210, 1200, 1190, 1140, 1120, 1080, 1020, 1000, 990, 970; [α]_D²⁰ + 26.8° (c 0.75, EtOH); ¹H NMR (360 MHz, CDCl₃): See Table 1; ¹³C NMR (90 MHz, CDCl₃): See Table 2.

Data of 7

Yellowish oil. HREI-MS: m/z 288.1358 (C₁₇H₂₀O₄, δ_m 0.3 mmu); EI-MS: m/z 288 (75, M⁺), 256 (43), 229 (47), 197 (53), 172 (61), 151 (80), 75 (100), 69 (55); UV λ_{max}^{EtOH} nm (ε) 232 (23,200), 298 (23,400); IR (CH₂Cl₂) cm⁻¹ 2940, 2850, 2840, 1705, 1630, 1590, 1570, 1490, 1470, 1450, 1440, 1240, 1190, 1160, 1150, 1120, 1080, 1050, 1040, 1000, 990, 970; ¹H NMR (360 MHz, CDCl₃): See Table 1; ¹³C NMR (90 MHz, CDCl₃): See Table 2.

Data of 8

Yellowish oil. HREI-MS: m/z 188.1188 (C₁₃H₁₆O, δ_m 1.3 mmu); EI-MS: m/z 188 (87, M⁺), 157 (100), 143 (29), 142 (48), 141 (30), 129 (77, C₁₀ H₉⁺), 128 (27), 115 (39), 91 (49), 79 (22), 77 (21); UV λ_{max}^{EtOH} nm (ε) 213 (11,000), 223 (10,300), 229 (10,300), 237 (7,600), 293 (24,600); IR (CH₂Cl₂) cm⁻¹ 3600, 3450 (br), 3120, 2960, 2940, 2880, 1705, 1640, 1590, 1490, 1450, 1440, 1380, 1360, 1240, 1190, 1120, 1050, 1030, 1000, 980, 970, 880; ¹H NMR (360 MHz, CDCl₃): See Table 1; ¹³C NMR (90 MHz, CDCl₃): See Table 2.

Data of 9

Yellowish oil. HREI-MS: m/z 222.0893 (C₁₂H₁₄O₄, δ_m 0.1 mmu); EI-MS: m/z 222 (44, M⁺), 164 (100), 163 (25), 149 (57), 135 (36), 107 (40), 106 (28), 59 (88), 43 (47); IR (CH₂Cl₂) cm⁻¹ 3580 (br), 3040, 2960, 2940, 2910, 2880, 2860, 2740, 1690, 1600, 1580, 1510, 1440, 1390, 1370, 1340, 1310, 1230, 1210, 1170, 1120, 1080, 1020, 890, 870, 820; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (1H, s, CHO), 7.48 (1H, d, J=2 Hz, 1-H), 7.41 (1H, dd, J=8 and 2 Hz,5-H), 7.00 (1H, d, J=8 Hz, 4-H), 4.52 (1H, dd, J=11 and 2 Hz, 17-Ha),

VOL. XLIII NO. 6

4.10 (1H, dd, J=11 and 9 Hz, 17-Hb), 3.94 (1H, dd, J=9 and 2 Hz, 18-H), 1.40 (3H, s, 20*-H₃), 1.33 (3H, s, 21*-H₃).

Data of 10

Colorless crystals from toluene - hexane, mp 157~159°C. HREI-MS: m/z 238.0848 (C₁₂H₁₄O₅, δ_m 0.7 mmu); EI-MS: m/z 238 (34, M⁺), 221 (11), 180 (96), 165 (78), 135 (50), 134 (24), 59 (100), 43 (26); IR (KBr) cm⁻¹ 3530, 3420, 2980, 2940, 1680, 1610, 1590, 1510, 1450, 1410, 1390, 1380, 1320, 1310, 1280, 1230, 1200, 1170, 1130, 1100, 1090, 1080, 1030, 1010, 950, 900, 830, 770, 670, 630; ¹H NMR (400 MHz, CDCl₃): See Table 1; ¹³C NMR (100 MHz, CDCl₃): See Table 2.

Data of 11

Colorless crystals from MeOH, mp 255~260°C (dec). HREI-MS: m/z 238.0834 (C₁₂H₁₄O₅, δ_m 0.7 mmu); EI-MS: m/z 238 (44, M⁺), 194 (25), 179 (75), 165 (25), 154 (100), 137 (30), 71 (20), 43 (30); IR (CH₂Cl₂) cm⁻¹ 3600, 3560 (br), 3500 (br), 2980, 2940, 1730, 1690, 1600, 1580, 1500, 1430, 1300, 1250, 1160, 1090, 1060, 980, 970; $[\alpha]_D^{20} + 18^\circ$ (c 0.7, MeOH); ¹H NMR (400 MHz, CDCl₃): See Table 1; ¹³C NMR (100 MHz, CD₃OD): See Table 2.

Acknowledgments

The authors wish to thank S. Moss for recording IR spectra and to O. HOSANG for mass spectroscopy. We are indebted to STEFAN LUTZ for technical assistance.

References

- SCHRAMM, G.; W. STEGLICH, T. ANKE & F. OBERWINKLER: Strobilurin A und B, antifungische Stoffwechselprodukte aus Strobilurus tenacellus. Chem. Ber. 111: 2779~2784, 1978
- ANKE, T.; F. OBERWINKLER, W. STEGLICH & G. SCHRAMM: The strobilurins New antifungal antibiotics from the basidiomycete *Strobilurus tenacellus*. (PERS. ex Fr.) SING. J. Antibiotics 30: 806~810, 1977
- SEDMERA, P.; V. MUSÍLEK, F. NERUD & M. VONDRÁČEK: Mucidin: Its identity with strobilurin A. J. Antibiotics 34: 1069, 1981
- ANKE, T.; H. BESL, U. MOCEK & W. STEGLICH: Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species (agaricales). J. Antibiotics 36: 661 ~ 666, 1983
- VONDRACEK, M.; J. VONDRACKOVA, P. SEDMERA & V. MUSILEK: Another antibiotic from the basidiomycete Oudemansiella mucida. Collect. Czech. Chem. Commun. 48: 1508~1512, 1983
- 6) BACKENS, S.; W. STEGLICH, J. BAEUERLE & T. ANKE: Hydroxystrobilurin D, ein antifungisches Antibiotikum and Kulturen von Mycena sanguinolenta (agaricales). Liebigs Ann. Chem. 1988: 405~409, 1988
- WEBER, W.; T. ANKE, B. STEFFAN & W. STEGLICH: Antibiotics from basidiomycetes. XXXII. Strobilurin E: A new cytostatic and antifungal (E)-β-methoxyacrylate antibiotic from Crepidotus fulvotomentosus Peck. J. Antibiotics 43: 207~212, 1990
- FREDENHAGEN, A.; A. KUHN, H. H. PETER, V. CUOMO & U. GIULIANO: Strobilurins F, G and H, three new antifungal metabolites from *Bolinea lutea*. I. Fermentation, isolation and biological activity. J. Antibiotics 43: 655~660, 1990
- NERUD, F.; P. SEDMERA, Z. ZOUCHOVA, V. MUSILEK & M. VONDRACEK: Biosynthesis of mucidin, an antifungal antibiotic from basidiomycete Oudemansiella mucida. Collect. Czech. Chem. Commun. 47: 1020~1025, 1982
- 10) BACKENS, S.: Neue Wirkstoffe aus Basidiomyceten der Gattungen Mycena, Hypholoma und Panaeolus. Ph. D. Thesis, Bonn, 1983